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ABSTRACT. Using an expansion of the transition density function
of a 1-dimensional time inhomogeneous diffusion, we obtain the
first and second order terms in the short time asymptotics of Euro-
pean call option prices. The method described can be generalized
to any order. We then use these option prices approximations to
calculate the first order and second order deviation of the implied
volatility from its leading value and obtain approximations which
we numerically demonstrate to be highly accurate. The analysis
is extended to degenerate diffusions using probabilistic methods,
i.e. the so called principle of not feeling the boundary.
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1. INTRODUCTION

Stochastic volatility models offer a widely accepted approach to
incorporating into the modeling of option markets a flexibility that
accounts for the implied volatility smile or skew, see Gatheral [14] for
a in depth introduction to the subject. Historically, the first models
to be introduced into the literature were the Hull and White model
in [22], the Stein and Stein model in [31], and the Heston model in
[20]. In these three models, the underlying asset and its volatility
are driven by Brownian motions that may be instantaneously cor-
related. The correlation coefficient is taken to be a constant. Later
on Bates [3] introduced the first of a series of models incorporating
jumps, and these were followed by Andersen and Andreasen [2].
Recent years have seen an explosion of models using the method of
stochastic time changes to produce ever more versatile models, see
for instance Carr et al [8] and Carr and Wu [10]. However, purely
diffusive models have not stopped being popular. A case in point
is the introduction into the literature of the SABR (stochastic alpha-
beta-rho) model by Hagan, Lesniewski and Woodward [16]:

dFt = Fβ
t ytdW1t, dyt = ytdW2t, dW1tdW2t = ρdt;

F0 = F̄0, y0 = α.

This model was generalized by Henry-Labordère, who in [18] intro-
duced the λ-SABR model, in which the second equation is comple-
mented by a mean-reverting term

dyt = λ(θ − yt)dt + ytdW2t .

Hagan and Woodward [15] used perturbation theory to find as-
ymptotic expansions for the implied volatility of European options
in a local volatility setting. Then Hagan, Kumar, Lesniewski, and
Woodward [17] used asymptotic methods to obtain approximations
for the implied volatility in the two factor SABR models. In a Courant
Institute lecture, Lesniewski [26] introduced a geometric approach
to asymptotics by relating the underlying geometry of the diffusion
process associated with the SABR model in the case β = 0 to the
Poincaré upper half plane, a model of hyperbolic space, and out-
lined an approach to asymptotics in stochastic volatility models via a
WKB expansion. This approach was further developed in an impor-
tant unpublished working paper by Hagan, Lesniewski, and Wood-
ward [16]. These authors used changes of variables to reduce the
SABR model with β 6= 0 to a perturbed form of the same model with
β = 0 and then used the Hausdorff-Baker Campbell formula to find
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approximate solutions for the fundamental solution of the perturbed
problem.

Henry-Labordère in [18] made contributions of both theoretical
and practical nature. As mentioned above, he introduced the λ-
SABR model, a two factor stochastic volatility model with a mean
reverting drift term for the volatility and showed how the heat ker-
nel method yields asymptotic formulas for the fundamental solution
and for the implied volatility and local volatility in this model. An
analogous result based on the stochastic framework in Molchanov
[29] was applied in a working paper by Bourgade and Croissant [6]
to a homogeneous version of the SABR model.

In the present paper we focus on the local volatility model and re-
consider the asymptotic expansion of implied volatility for small
time to maturity. In the case when the volatility does not depend ex-
plicitly on time (i.e., time homogeneous models), our result’s lead-
ing order (zeroth order) term agrees with those of Berestycki, Busca,
and Florent[4], Hagan, Lesniewski, and Woodward[16], and Henry-
Labordère[18]. When the local volatility depends explicitly on time,
i.e., for time inhomogeneous models, we find that even the formula for
the zeroth order term requires a small but key correction. In the first
order and still in the case of time independent volatility, our formula
is different from and more accurate than the ones in [15], [16], [17],
and [18]. In fact we show rigorously that our first order correction
really is the first order derivative of the implied volatility with re-
spect to the time to maturity. This characterization alone only im-
plies that for very small time to maturity the formula is optimal. If
the added accuracy brought by the formula was only for very small
times this would limit its usefulness. Our numerical experiments
show that there is a gain in accuracy for a wide range of times. After
this work was completed, it was called to our attention that our first
order correction, in the time homogeneous case and when r = 0, had
already been discovered by Henry-Labordère and appeared into his
book [19]. There it is obtained by a heuristic procedure, in which
the nonlinear equation of Berestycki et al [4] satisfied by the implied
volatility is expanded in powers of the time to maturity. Our ap-
proach allows us to rigorously justify this formula. The form of the
first order correction we give in the case r 6= 0 appears to be new, as
does the formula for the σ1 in the case of time inhomogeneous diffu-
sions. In the simplest case r = 0 and time homogeneous diffusions
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the first order correction is given by

σ̂1 =
σ̂3

0
(ln K− ln s)2 ln

√
σ(s)σ(K)
σ̂(T, s)

,

where

σ̂0 =
[

1
ln K− ln s

∫ K

s

du
uσ(u)

]−1

is the leading term of the implied volatility.
In this paper we take the analysis one step further and determine,

in addition to the first order correction, the second order correction
σ2 in the case r = 0, but with time dependent coefficients. The second
order correction in the case r 6= 0 can then readily be obtained by a
procedure we will briefly describe.

Although our main objective in this paper is to refine the asymp-
totics in the local volatility setting, as was shown in the working
paper by Hagan, Lesniewski, and Woodward and then by Henry-
Labordère, one may use a two-step method discovered independently
by Gyöngy and Dupire to derive an implied volatility in the SABR
or λ-SABR model by first obtaining an equivalent local volatility
model, using Laplace asymptotics, and then using the implied volatil-
ity for the resulting model. This will be developped in a forthcoming
paper.

Besides the results given here, the only other rigorous results lead-
ing to a justification of the zeroth order approximation in local and
stochastic volatility models we are aware of were provided by Beresty-
cki, Busca, and Florent in [4] and [5]. Medvedev and Scaillet [28]
and Henry-Labordère in his book [19] have shown how to obtain
the results by matching the coefficients of the powers of the time
to expiration in the nonlinear partial differential equation satisfied
by the implied volatility. Also Kunimoto and Takahashi began in
[24] a series of papers which bases a rigorous perturbation theory
on Malliavin-Watanabe calculus. Takahashi and collaborators have
recently applied this approach to the λ−Sabr model [32].

We derive our results by two different methods. The first is a prob-
abilistic approach. Since it is technically rather simple, we provide
the full detail of the proof. This approach is described in SECTION
2. The second approach, described much more briefly in SECTION 3,
is via the “geometric expansion” coupled with the Levi parametrix
method. This approach was first discovered by Yoshida [34], but
modern references seem to have overlooked his contribution. Some
additional details and a very clear exposition can be found in Chavel
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[11]. In SECTION 2 we only carry the expansion out to order one. It
turns out that the second method in SECTION 3 is computationally
quite efficient, so we use it to compute the first and second order cor-
rections for the call prices and to compute the first order correction
in the time inhomogeneous case as well as the second order correc-
tion. A numerical section, SECTION ??, explores the effectiveness of
the expansions obtained and compares these to earlier expansions.

2. PROBABILISTIC APPROACH

2.1. Call price expansion. Suppose that the dynamics of the stock
price S is given by

dSt = St {r dt + σ(St) dWt} .

Then the stochastic differential equation for the logarithmic stock
price process X = ln S is

dXt = η(Xt)dWt −
1
2

η2(Xt)dt + rdt,

where η(x) = σ(ex). Denote by c(t, s) the price of the European call
option (with expiry T and strike price K understood) at time t and
stock price s in the local volatility model. It satisfies the following
Black-Scholes equation

ct +
1
2

σ(s)2s2css + rscs − rc = 0, c(T, s) = (s− K)+.

It is more convenient to work with the function

v(τ, x) = c(T − τ, ex), (τ, x) ∈ [0, T]×R.

The reason is that for this function the Black-Scholes equation takes
a simpler form
(2.1)

vτ =
1
2

η2(x)vxx +
[

r− 1
2

η(x)2
]

vx − rv, v(0, x) = (ex − K)+.

We now study the the asymptotic behavior of the modified call
price function v(τ, x) as τ ↓ 0. Our basic technical assumption is as
follows. There is a positive constant C such that for all x ∈ R,

C−1 ≤ η(x), |η′(x)| ≤ C, |η′′(x)| ≤ C.

Since η(x) = σ(ex), the above assumption is equivalent to the as-
sumption that there is a constant C such that for all s ≥ 0,

(2.2) C−1 ≤ σ(s) ≤ C, |sσ′(s)| ≤ C, |s2σ′′(s)| ≤ C.



ASYMPTOTICS OF IMPLIED VOLATILITY 7

For many popular models (e.g., CEV model), these conditions may
not be satisfied in a neighborhood of the boundary points s = 0 and
s = ∞. However, since we only consider the situation where the
stock price and the strike have fixed values other than these bound-
ary values, or more generally vary in a bounded closed subinterval
of (0, ∞), the behavior of the coefficient functions in a neighborhood
of the boundary points will not affect the asymptotic expansions of
the transition density and the call price. Therefore we are free to
modify the values of σ in a neighborhood of s = 0 and s = ∞ so that
the above conditions are satisfied. The principle of of not feeling the
boundary (see APPENDIX A) shows that such modification only pro-
duce a exponentially negligible error which will not show up in the
relevant asymptotic expansions.

Proposition 2.1. Let X = ln S be the logarithmic stock price. Denote the
density function of Xt by pX(τ, x, y). Then as τ ↓ 0,

pX(τ, x, y) =
u0(x, y)√

2πτ
e−

d2(x,y)
2τ [1 + O(τ; x, y)] .

Here

d(x, y) =
∫ y

x

du
η(u)

and

(2.3) u0(x, y) = η(x)1/2η(y)−3/2 exp
[
−1

2
(y− x) + r

∫ y

x

du
η(u)2

]
.

Furthermore, the remainder satisfies the inequality |O(τ; x, y)| ≤ Cτ for
some constant independent of x and y.

Proof. See PROPOSITION 2.6 in SECTION 2.3. �

Now we compute the leading term of v(τ, x) as τ ↓ 0. For the heat
kernel pX(τ, x, y) itself, the leading term is

u0(x, y)√
2πτ

exp
[
−d(x, y)2

2τ

]
.

The in the money case s > K yielding nothing extra (see SECTION
2.4), we only consider the out of the money case s < K, or equiva-
lently, x < ln K. We express the modified price function v(τ, x) in
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terms of the density function pX(τ, x, y) of Xt. We have

v(τ, x) =c(T − τ, ex)

=e−rτE
[
(ST − K)+|ST−τ = ex]

=e−rτE
[
(Sτ − K)+|S0 = ex]

=e−rτEx

[
(eXτ − K)+

]
.

In the third step we used the Markov property of S. Therefore

v(τ, x) =
1√
2πτ

∫ ∞

ln K
(ey − K)e−rτ pX(τ, x, y) dy(2.4)

=
1√
2πτ

∫ ∞

ln K
(ey − K)e−rτu0(x, y)

exp
[
−d(x, y)2

2

]
(1 + O(τ; x, y)) dy.

From the inequality |O(τ; x, y)| ≤ Cτ for some constant C, it is clear
from (2.4) that remainder term will not contribute to the leading term
of v(τ, x). For this reason we will ignore it completely in the subse-
quent calculations. Similarly, because |e−rτ− 1| ≤ rτ, we can replace
e−rτ in the integrand by 1. A quick inspection of (2.4) reveals that the
leading term is determined by the values of the integrand near the
point y = ln K. Introducing the new variable z = y− ln K and letting
ρ = ln K − x, we conclude that v(x, τ) has the same leading term as
the function

v](τ, x) =
K√
2πτ

∫ ∞

0
(ez − 1)u0(x, z + ln K)(2.5)

exp
[
−d(x, z + ln K)2

2τ

]
dz.

The key calculation is contained in the proof of the following result.

Lemma 2.2. We have τ ↓ 0∫ ∞

0
zk exp

[
−d(x, z + ln K)2

2τ

]
dz

∼ k!
[

σ(K)τ

d(x, ln K)

]k+1

exp
[
−d(x, ln K)2

2τ

]
.

Proof. See LEMMA 2.7 in SECTION 2.3. We only need the cases k = 1
and 2. �

The main result of this section is the following.
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Theorem 2.3. Suppose that the volatility function σ satisfies the basic as-
sumption (2.2). If x < ln K we have as τ ↓ 0,

v(τ, x) ∼ Ku0(x, ln K)√
2π

[
σ(K)

d(x, ln K)

]2

τ3/2 e−
d(x,ln K)2

2τ .

Proof. We have shown that v(x, τ) and v](x, τ) defined in (2.5) has
the same leading term. We need to replace the function before the
exponential factor by its value at the boundary point z = 0. First of
all, we have

|ez − 1− z| ≤ z2ez

From the explicit expression (2.3) and the basic assumption (2.2) it is
easy to verify that

|u0(x, z + ln K)− u0(x, ln K)| ≤ zeCz

for some positive constant C. By the estimate in LEMMA 2.2 we ob-
tain

v(τ, x) ∼ v](τ, x)

∼ Ku0(x, ln K)√
2πτ

∫ ∞

0
z exp

[
−d(x, z + ln K)2

2τ

]
dz

∼ Ku0(x, ln K)√
2πτ

[
σ(K)τ

d(x, ln K)

]2

e−
d(x,ln K)2

2τ .

�

2.2. Implied volatility expansion. Using the leading term of the call
price function calculated in the previous section, we are now in a
position to prove the main theorem on the asymptotic behavior of
the implied volatility σ̂(t, s) near expiry T. We will obtain this by
comparing the leading terms of the relation

c(t, s) = C(t, s; σ̂(t, s), r).

Here C(t, s; σ, r) is the classical Black-Scholes pricing function. For
this purpose, we need to calculate the leading term of the classical
Black-Scholes call price function. Our main result is the following.

Theorem 2.4. Let σ̂(t, s) be the implied volatility when the stock price is s
at time t. Then we have near the expiry T,

σ̂(t, s) = σ̂(T, s) + σ̂1(T, s)(T − t) + O((T − t)2),

where

σ̂(T, s) =
[

1
ln K− ln s

∫ K

s

du
uσ(u)

]−1
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and σ̂1(T, s) is given by

σ̂(T, s)3

(ln K− ln s)2

[
ln

√
σ(s)σ(K)
σ̂(T, s)

+ r
∫ K

s

(
1

σ2(u)
− 1

σ̂2(T, s)

)
du
u

]
.(2.6)

As we have mentioned above, the leading term σ̂(T, s) was ob-
tained in Berestycki, Busca and Florent [4]. They first derived a
quasi-linear partial differential equation for the implied volatility
and used a comparison argument. When there interest rate r = 0,
the first order approximation of the implied volatility is given by

(2.7) σ̂1(T, s) =
σ̂(T, s)3

(ln K− ln s)2 ln

√
σ(s)σ(K)
σ̂(T, s)

.

This case has already appeared in Henry-Labordère [19]. To begin
we establish the following

Lemma 2.5. Let V(τ, x; σ, r) = C(T − τ, ex; σ, r) be the classical Black-
Scholes call price function. Then we have as τ ↓ 0,

V(τ, x; σ, r) ∼ 1√
2π

Kσ3τ3/2

(ln K− x)2 exp
[
− ln K− x

2
+

r(ln K− x)
σ2

]
exp

[
− (ln K− x)2

2τσ2

]
+ R(τ, x; σ, r).

The remainder satisfies

|R(τ, x; σ, r)| ≤ C τ5/2 exp
[
− (ln K− x)2

2τσ2

]
,

where C = C(x, σ, r, K) is uniformly bounded if all the indicated parame-
ters vary in a bounded region.

Proof. The result can be proved starting from the classical Black-Scholes
formula for V(τ, x; σ, r). We omit the detail. Note that the leading
term can also be obtained directly from THEOREM 2.3 by assuming
that σ(x) is independent of x. �

We now in a position to complete the proof of the main THEOREM
2.4. Set σ̃(τ, x) = σ̂(T − τ, s). From the relation

(2.8) v(τ, x) = V(τ, x; σ̃(τ, x), r)

and their expansions we see that the limit

σ̂(T, s) = lim
τ↓0

σ̃(τ, x)
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exists and is given by the given expression in the statement of the
theorem. Indeed, by comparing only the exponential factors on the
two sides we obtain

d(x, K) =
ln K− x
σ̃(0, x)

,

from which the desired expression for σ̃(0, x) follows immediately.
Next, let

σ̃1(τ, x) =
σ̃(τ, x)− σ̃(0, x)

τ
.

We have obviously

(2.9) σ̃(τ, x) = σ̃(0, x) + σ̃1(τ, x)τ.

From this a simple computation shows that
(2.10)

exp
[
− (ln K− x)2

2τσ̃(τ, x)2

]
= exp

[
− d2

2τ
+

ρ2

σ3
0
· σ1(τ, x)

]
[1 + O(τ)] ,

where for simplicity we have set

ρ = ln K− x, d = d(x, K), σ0 = σ̃(0, x)

on the right side. From (2.8) and (2.9) we have

v(τ, x) = V (τ, x; σ̃(0, x) + σ1(τ, x)τ, r) .

We now use the asymptotic expansions for v(τ, x) and V(τ, x; σ, r)
given by THEOREM 2.3 and LEMMA 2.5, respectively, and then apply
(2.10) to the second exponential factor in the equivalent expression
for V(τ, x; σ̃, r). After some simplification we obtain

u0 σ(K)2(1 + O(τ)) = σ0 exp

[
−ρ

2
+

rρ

σ2
0

]
exp

[
− ρ2

σ3
0
· σ̃1(τ, x)

]
,

where u0 = u0(x, ln K). Letting τ ↓ 0, we see that the limit

σ̃1(0, x) = lim
τ↓0

σ̃(τ, x)− σ̃(0, x)
τ

exists and is given by

σ1(0, x) =
r
ρ
−

σ3
0

2ρ2 −
σ3

0
ρ2 ln

u0σ(K)2

σ0
.

Using the expression of u0 = u0(x, ln K) in (2.3) we immediately
obtain the formula for σ1(0, x).
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2.3. Some computations. This subsection contains the proofs of the
technical results used in the previous subsections. We retain the no-
tation we have used so far. The results are restated for easy reference.

Proposition 2.6. Let X = ln S be the logarithmic stock price process. De-
note the density function of Xτ by pX(τ, x, y). Then we have the following
expansion as τ ↓ 0

pX(τ, x, y) =
u0(x, y)√

2πτ
e−

d(x,y)2
2τ [1 + O(τ; x, y)] ,

where

u0(x, y) = η
1
2 (x)η−

3
2 (y) exp

[
− 1

2
(y− x) + r

∫ y

x

du
η(u)2

]
.

For the remainder we have |O(τ; x, y)| ≤ Cτ for some constant C inde-
pendent of x and y.

Proof. Recall that {Xt} satisfies the following stochastic differential
equation

dXt = η(Xt)dWt −
1
2

η2(Xt)dt + rdt,

where η(x) = σ(ex). Introduce the function

f (z) =
∫ z

x

du
η(u)

and let Yt = f (Xt). Then

dYt = dWt − h(Yt)dt.

Here

h(y) =
η ◦ f−1(y) + η′ ◦ f−1(y)

2
− r

η ◦ f−1(y)
.

It is enough to study the the transition density function pY(τ, x, y) of
the process Y.

Introduce the exponential martingale

Zτ = exp
[∫ τ

0
h(Ys)dWs −

1
2

∫ τ

0
h2(Ys)ds

]
and a new probability measure P̃ by dP̃ = ZTdP. By Girsanov’s
theorem, the process Y is a standard Brownian motion under P̃. For
any bounded positive measurable function ϕ we have∫

Ω
ϕ(Yτ)dP̃ =

∫
Ω

ϕ(Yτ)ZτdP.
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Hence, denoting Ex,y { · } = Ex { · |Yτ = y}, we have∫
ϕ(y)p(τ, x, y)dy =

∫
ϕ(y)Ex,y(Zτ)pY(τ, x, y)dy,

where

p(τ, x, y) =
1√
2πτ

exp
[
− (y− x)2

2τ

]
is the transition density function of a standard one dimensional Brow-
nian motion. It follows that

p(τ, x, y)
pY(τ, x, y)

= Ex,y(Zτ).(2.11)

For the conditional expectation of Zτ, we have

Ex,yZτ = Ex,y exp
[∫ τ

0
h(Ys) ◦ dYs −

1
2

∫ τ

0

{
h′(Ys)− h2(Ys)

}
ds
]

= eH(y)−H(x)Ex,y exp
[
−1

2

∫ τ

0
h′(Ys)− h2(Ys)ds

]
,

where H′(y) = h(y). The relation (2.11) now reads as

p(τ, x, y)eH(y)

pY(τ, x, y)eH(x)
= Ex,y exp

[
−1

2

∫ τ

0

{
h′(Ys)− h2(Ys)

}
ds
]

.(2.12)

Using the assumption that η and its first and second derivatives are
uniformly bounded it is easy to see that the conditional expectation
above is of the form 1 + O(τ; x, y) and |O(τ; x, y)| ≤ Cτ with a con-
stant C independent of x and y. From

h(y) =
η ◦ f−1(y) + ηx ◦ f−1(y)

2
− r

η ◦ f−1(y)

we have

H(y)− H(x) =
f−1(y)− f−1(x)

2
+

1
2

ln
η( f−1(y))
η( f−1(x))

−
∫ f−1(y)

f−1(x)

r
η2(v)

dv.

This together with (2.12) gives us the asymptotics pY(τ, x, y) of Yt.
Once pY(τ, x, y) is found, it is easy to convert it into the density of
Xt = f−1(Yt) using the formula pX(τ, x, y) = pY(τ, f (x), f (y)) f ′(y).

�
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Lemma 2.7. We have∫ ∞

0
zk exp

[
−d(x, z + ln K)2

2τ

]
dz

∼ k!
[

σ(K)τ

d(x, ln K)

]k+1

exp
[
−d(x, ln K)2

2τ

]
.

Proof. We follow the method in de Bruin [7]. Recall that

d(x, y) =
∫ y

x

du
η(u)

.

Let
f (z) = d(x, z + ln K)2 − d(x, ln K)2.

The essential part of the exponential factor is e− f (z)/2τ. For any ε > 0,
there is λ > 0 such that f (z) ≥ λ for all z ≥ ε, hence

f (z)
τ
≥
(

1
τ
− 1
)

λ + f (z).

From our basic assumptions (2.2) we see that there is a positive con-
stant C such that f (z) ≥ Cz2 for sufficiently large z. Since the integral∫ ∞

0
zke−Cz2

dz

is finite, the part of the original integral in the range [ε, ∞) does not
contribute to the leading term of the integral. On the other hand,
near z = 0 we have f (z) ∼ f ′(0)z with f ′(0) = 2d(x, ln K)/σ(K). It
follows that the integral has the same leading term as

exp
[
−d(x, ln K)2

2τ

] ∫ ∞

0
zk exp

[
−d(x, ln K)

σ(K)τ
z
]

.

The last integral can be computed easily and we obtain the desired
result. �

2.4. In the money case. For the in the money case s > K, from

(s− K)+ = (s− K) + (s− K)−,

we have

u(τ, x)− ex

= Ex

[
(eXτ − K)+e−rτ

]
− ex

= Ex

[
eXτ e−rτ − ex

]
+ e−rτEx

(
eXτ − K

)−
− Ke−rτ.
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The process eXτ e−rτ = Sτe−rτ is a martingale in τ starting from ex,
hence the first term in the right side of the above equation vanishes.
The calculation of the leading term of the second term is similar to
that of the case when s < K. Therefore for s > K we have the follow-
ing asymptotic expansion

u(τ, x) ∼ ex−Ke−rτ− Ku0(x, ln K)√
2π

[
σ(K)

d(x, ln K)

]2

τ3/2 exp
[
−d(x, ln K)2

2τ

]
.

It is easy to see that this case produces nothing new.

3. YOSHIDA’S APPROACH TO HEAT KERNEL EXPANSION

3.1. Time inhomogeneous equations in one dimension. In this sec-
tion we review an expression of the heat kernel for a general non-
degenerate linear parabolic differential equation due to Yoshida [34].
We will only work out the one dimensional case but in a form that
is more general than we actually need in view of possible future
use. In our opinion, this form of heat kernel expansion is more effi-
cient for applications at hand than the covariant form pioneered by
Avramidi and adapted by Henry-Labordère. The latter, being intrin-
sic, is preferable for higher order corrections. However, the Yoshida
approach is completely self-contained and, especially when the coef-
ficients in the diffusions depend explicitly on time, introduces some
clear simplifications of the necessary computations.

Consider the following one dimensional parabolic differential equa-
tion

(3.1) ut + Lu = ut +
1
2

a(s, t)2uss + b(s, t)us + c(s, t)u = 0,

where subscripts refer to corresponding partial differentiations. In
our case, a(s, t) = sσ(s, t), where σ(s, t) is the local volatility func-
tion. Note that a(s, t) vanishes at s = 0 so it is not non-degenerate at
this point. For the applicability of Yoshida’s method in this case see
REMARK 3.5. We seek an expansion for the kth order approximation
to the fundamental solution p(s, t, K, T) in the form

(3.2) p(s, t, K, T) ∼ e−d(K,s,t)2/2(T−t)√
2π(T − t)a(K, T)

k

∑
i=0

ui(s, K, t)(T − t)i,

where

d(K, s, t) =
∫ s

K

dη

a(η, t)
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is the Riemannian distance between the points K and s with respect
the time dependent Riemannian metric ds2/a(s, t)2. Yoshida [34] es-
tablished that the coefficients ui have the following form:
(3.3)

u0(s, K, t) =

√
a(s, t)
a(K, t)

exp
[
−
∫ s

K

b(η, t)
a(η, t)2 dη −

∫ s

K

dt(K, η, t)
a(η, t)

dη

]
.

and

ui(s, K, t) =
u0(s, K, t)
d(K, s, t)i

∫ s

K

d(K, η, t)i−1

u0(η, K, t)

(
Lui−1 +

∂ui−1

∂t

)
dη

a(η, t)
.

(3.4)

The function u0 is given explicitly and ui can be calculated recur-
sively, and be performed in the mathematical software packages such
as Mathematica or Maple. If b = c = 0 in the equation (3.1) and a is
independent of time, we can calculate u1 as follows:

u1(s, K) =
u0(s, K, t)
4d(K, s)

∫ y

x

(
a′′(η)− 1

2
a′(η)2

a(η)

)
dη

=
1

4d(K, s)

√
a(s)
a(K)

[
a′(s)− a′(K)− 1

2

∫ s

K

a′(η)2

a(η)
dη

]
.(3.5)

Here we need to use the explicit expression for u0 mentioned earlier.
In the general case with b 6= 0 and c 6= 0, we may compute an explicit
expression for u1 as follows. First, from above, we have that

u1(s, K, t) =
u0(s, K, t)
d(K, s, t)

∫ s

K

1
u0(η, K, t)

[
a2

2
∂2u0

∂s2 + b
∂u0

∂s
+ cu0 +

∂u0

∂t

]
dη

a(η, t)
.

Recall that

ln u0 =
∫ s

K

[
as(η, t)

2
− b(η, t)

a(η, t)
− dt(K, η, t)

]
dη

a(η, t)
.

For notational simplicity, we denote the integrand in the above inte-
gral by H, i.e.,

H(s, K, t) =
∂

∂s
[ln u0(s, K, t)] =

as(s, t)
2a(s, t)

− b(s, t)
a(s, t)

2

− dt(K, s, t)
a(s, t)

.

Then by straightforward computations, we can rewrite u1 as

u0(s, K, t)
d(K, s, t)

∫ s

K

[
a2

2

(
H2 + Hs

)
+ bH + c +

∫ η

K
Ht(ζ, K, t)dζ

]
dη

a(η, t)
(3.6)
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Remark 3.1. In the Black-Scholes setting, a(s, t) = σBSs and uBS
0 and

uBS
1 are given explicitly as

uBS
0 (s, K) =

√
s
K

, uBS
1 (s, K) = −

σ2
BS
8

√
s
K

.

In fact, by straightforward computations, all the uBS
k ’s can be calcu-

lated out and are given by

(3.7) uBS
k (s, K) =

(−1)k

k!

(
σ2

BS
8

)k√
s
K

,

which in turn yields the following heat kernel expansion for Black-
Scholes’ transition probability density pBS(s, K, t) as

(3.8) pBS(s, K, t) =
exp

[
− (ln s−ln K)2

2σ2
BSt

]
√

2πtσBSK

√
s
K

∞

∑
k=0

(−1)k

k!

(
σ2

BSt
8

)k

.

This formula can also be verified directly.

3.2. Calculating option prices. We follow the approach adopted by
Kusnetsov [23], who wrote his thesis under the direction of Claudio
Albanese, and Henry-Labordere [18] based on the earlier work of
Dupire [13], and by Derman and Kani [12], who used the following
method to obtain the call prices directly from the probability density
function without the requirement for a spatial integration. Unlike
the method described in SECTION 1, the result can be obtained with-
out using Laplace’s method. Thus an additional approximation is
avoided at this stage. The Carr-Jarrow formula in [9] (this formula
was later exploited by Derman and Kani and by Dupire) for the call
prices C(s, K, t, T) reads

(3.9) C(s, K, t, T) = (s− K)+ +
1
2

∫ T

t
a(K, u)2p(s, t, K, u)du.

In the present setup, we use the Yoshida expansion (3.2) for the heat
kernel p(s, t, K, u). This gives

C(s, K, t, T)− (s− K)+

∼ 1
2
√

2π

k

∑
i=0

(∫ T

t
a(K, u)e−d(K,s,t)2/2(u−t)(u− t)i− 1

2 du
)

ui(s, K, t).

This method was already used by Henry-Labordère in [18]. When
we seek to determine the coefficient σBS,2 in the expansion for the
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implied volatility σBS, we will need to expand out (3.10), which we do
in the following. We will show that[

C(s, t, K, T)− (s− K)+] ed(K,s,t)2/2(T−t)(3.10)

= C(1)(s, K, t)(T − t)3/2 + C(2)(s, K, t)(T − t)5/2 + o(T − t)5/2.

The key step in making the approach in SECTION 2 rigorous is to
show that the remainder in (3.10) truly is o(T − t)5/2. This in turn
will follow, as explained in from the fact that the first few terms in
the “geometric series expansion” can be complemented by the Levi
parametrix method to ensure that we have

p(s, t, K, T) =
e−

d(K,s,t)2

2(T−t)
√

2πa(K, T)

[
2

∑
i=0

ui(s, K, t)(T − t)i− 1
2 + o(T − t)

3
2

]
,

i.e., that the suitably modified preliminary approximation of the heat
kernel can actually give a convergent series with a tail of order smaller
than the last term in the geometric series. Note that the theory re-
quires us to proceed till order k > n/2 in the series (i.e., order 1 in
the present case n = 1) if all we want is the transition probability.
If we wish to use the series to calculate a first order Greek, like the
Delta, we would need to expand up to order 2, before using the Levi
parametrix.

We now proceed with some additional approximations that will
be necessary to obtain the expansion for the implied volatility. Note
that ∫ T

t
a(K, u)e−

d(K,s,t)2

2(u−t) (u− t)i− 1
2 du

∼
∫ T

t
[a(K, t) + at(K, t)(u− t)]e−

d(K,s,t)2

2(u−t) (u− t)i− 1
2 du

= a(K, t)
∫ T

t
e−

d(K,s,t)2

2(u−t) (u− t)i− 1
2 du

+at(K, t)
∫ T

t
e−

d(K,s,t)2

2(u−t) (u− t)i+ 1
2 du

= a(K, t)Ui(d(K, s, t), T − t) + at(K, t)Ui+1(d(K, s, t), T − t),

where we have introduced the function

(3.11) Ui(ω, τ) =
∫ τ

0
ui− 1

2 e−
ω2
2u du
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for notational simplicity. Inserting this into (3.10) we get

C(s, K, t, T)− (s− K)+

(3.12)

∼ 1
2
√

2π

k

∑
i=0

[a(K, t)Ui(d, T − t) + at(K, t)Ui+1(d, T − t)] ui(s, K, t).

Remark 3.2. The corresponding term in the Black-Scholes setting is

CBS(s, K, t, T)− (s−K)+ ∼
√

sK
2
√

2π

[
σBSU0(dBS, T − t)−

σ3
BS
8

U1(dBS, T − t)

]
,

where

dBS = dBS(K, s) =
1

σBS
ln

s
K

is the distance between K and s in the Black-Scholes’ setting. In fact,
the complete series can be obtained by using the general formula
(3.8) in Remark 3.1 and we have

CBS(s, K, t, T)− (s−K)+ =
√

sKσBS

2
√

2π

∞

∑
k=0

(−1)k

k!

(
σ2

BS
8

)k

Uk(dBS, T− t).

The leading order in the expression for the call price away from
the money is (T − t)3/2e−d(K,s,t)2/2(T−t). At this point we are seek-
ing the contributions up to order (T − t)5/2. Canceling the common
factor we have arrived at the following balance relation between the
call prices from the local volatility model and from the Black-Scholes
setting:

√
sK

[
σBSU0(dBS, T − t)−

σ3
BS
8

U1(dBS, T − t)

]
(3.13)

∼ [a(K, t)U0(d, T − t) + at(K, t)U1(d, T − t)] u0(s, K, t)
+a(K, t)U1(d, T − t)u1(s, K, t).

We now consider two regimes separately.
REGIME 1: s 6= K positive and fixed and T− t ↓ 0. We shall use the

following asymptotic formulas for U0 and U1 that are easily obtained
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from the well known asymptotic formula for the complementary er-
ror function. As τ → 0+, we have

U0(ω, τ) = 2
√

τe−
ω2
2τ − 2ω

∫ ∞

ω√
τ

e−
x2
2 dx

= 2

[
τ3/2

ω2 −
3τ5/2

ω4 + o
(

τ5/2
)]

e−
ω2
2τ ,

U1(ω, τ) =
2τ3/2

3
e−

ω2
2τ − ω2

3
U0(ω, τ)

=

[
2τ5/2

ω2 + o
(

τ5/2
)]

e−
ω2
2τ

These expansions will be applied to ω = d(K, s, t) (local volatility)
and ω = dBS(K, s). We now let

ξ = ln
s
K

.

The relation between dBS and σBS is

dBS =
ξ

σBS
.(3.14)

In the time inhomogeneous case we seek an expansion for σBS in the
form

σBS(t, T) = σBS,0(t) + σBS,1(t)(T − t) + σBS,2(t)(T − t)2 + o
(
(T − t)2

)
.

Note the dependence of the coefficients in the expansion on the spot
variable t. This dependence is absent in the time homogeneous case,
as will be clear from the result of the expansion. Its presence in the
case of time inhomogeneous diffusions is natural since already the
transition probability density depends jointly on t and T and not
only on their difference. We seek natural expressions for the coeffi-
cients which do not depend on the expiry explicitly. Mathematically
it is of course also possible to expand around t = T, but in this case
more terms are needed to recover the same accuracy.
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Now using the above expansions for U0(ω, τ) and U1(ω, τ) and
relation (3.14) we see that the left hand side of (3.13) becomes

√
sK

ξ2 e
− ξ2

2σ2
BS,0(T−t)

+
ξ2σBS,1

σ3
BS,0(3.15) [

σ3
BS,0 +

(
3σ2

BS,0σBS,1 −
ξ2σBS,0

2

[
3
(

σBS,1

σBS,0

)2

− 2σBS,2

σBS,0

]

−σ5
BS,0

[
3
ξ2 +

1
8

])
(T − t)

]
.

Here we have used the following expansion for expanding the expo-
nent in the exponential term:

1
σ2

BS
∼ 1

σ2
BS,0

[
1− 2σBS,1

σBS,0
(T − t) +

(
3σ2

BS,1

σ2
BS,0
− 2σBS,2

σBS,0

)
(T − t)2

]
.

On the local volatility side, on the other hand, we have, after again
canceling a factor (T − t)3/2 and a factor 1

2
√

2π
, that the terms of up

to order T − t are

e−
d2

2(T−t)

(3.16)

[
a(K, t)u0

d2 +
(

at(K, t)u0

d2 − 3a(K, t)u0

d4 +
a(K, t)u1

d2

)
(T − t)

]
.

Finally, from the corresponding terms in (3.15) and (3.16),

• by matching the exponential term, we obtain

σBS,0 =
ξ

d(K, s, t)
=

ln
( s

K
)∫ s

K
dη

a(η,t)

.(3.17)

• by matching the constant term, we obtain

σBS,1 =
σ3

BS,0 ln
[

u0(s,K,t)a(K,t)ξ2
√

sKd2σ3
BS,0

]
ξ2 =

ξ ln
[

a(K,t)u0(s,K,t)d(K,s,t)
ξ
√

sK

]
d(K, s, t)3 .(3.18)
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• by matching the first order term, we obtain

σBS,2 = −
3σBS,1σ2

BS,0

ξ2 +
3σ2

BS,1

2σBS,0
+

σ3
BS,0

ξ2[
3σ2

BS,0

ξ2 +
σ2

BS,0

8
+

at(K, t)
a(K, t)

− 3
d2(K, s, t)

+
u1(s, K, t)
u0(s, K, t)

]

= −3σBS,1

d2 +
3σ2

BS,1

2σBS,0
+

ξ3

8d5 +
ξ

d3

[
at(K, t)
a(K, t)

+
u1(s, K, t)
u0(s, K, t)

]
.

(3.19)

Above we need the expression for u1 obtained earlier, see equation
(3.6).

REGIME 2: s = K > 0 (at the money) and T − t ↓ 0. We use again
the expansion (3.12) for the call price, after setting τ = T − t and
s = K

C(K, K, t, T) ∼ 1
2
√

2π

∞

∑
i=0

[aUi(0, τ) + atUi+1(0, τ)] ui(K, K, t),

and this time we keep the terms up to order τ
5
2 . Trivially, with ω = 0

in (3.11) we have

U0(0, τ) = 2
√

τ, U1(0, τ) =
2
3

τ
3
2 , U2(0, τ) =

2
5

τ
5
2 .

On the Black-Scholes side we then have, after dropping the factor
1

2
√

2π
,

K
[

2
(

σBS,0 + τσBS,1 + τ2σBS,2

)√
τ − 1

12

(
σBS,0 + σBS,1τ + σBS,2τ2

)3
τ

3
2

+
1

320

(
σBS,0 + σBS,1τ + σBS,2τ2

)5
τ

5
2 + o(τ

5
2 )
]

On the local volatility side we have

2au0
√

τ +
2
3
(atu0 + au1)τ

3
2 +

2
5
(atu1 + au2)τ

5
2 + o(τ

5
2 ),

where we have omitted the dependence on the independent vari-
ables, in all of which we replace s by K. Grouping the Black-Scholes
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contribution in powers of τ we obtain

2KσBS,0
√

τ + K
(

σBS,1 −
1

12
σ3

BS,0

)
τ

3
2

+

[
2KσBS,2 −

K
4

σ2
BS,0σBS,1 + K

σ5
BS,0

320

]
τ

5
2 + o(τ

5
2 ).

Matching the coefficients of the powers of τ and using u0(K, K, t) =
1, we obtain

KσBS,0 = a(K, t),

K
(

2σBS,1 −
1
12

σ3
BS,0

)
=

2
3
(at + au1),

2KσBS,2 −
K
4

σ2
BS,0σBS,1 +

K
320

σ5
BS,0 =

2
5
(atu1 + au2).

They yield consecutively,

σBS,0 =
a(K, t)

K
,

σBS,1 =
at + au1

3K
+

a3(K, t)
24K3 ,

σBS,2 =
atu1 + au2

5K
+

σ2
BS,0σBS,1

8
−

σ5
BS,0

640
.

Remark 3.3. We have checked by explicit computation that in the
time-homogeneous case, these at-the-money expressions for the σBS,i,
i = 0, 1, 2, coincide with limits as s → K of the out-of-the-money ex-
pressions (3.17), (3.18) and (3.19).

Remark 3.4. Taking into account non-zero interest rates
It is straightforward to combine the Yoshida approach with non-zero
interest rates and/or dividends to account for the presence of the r
dependent term in (2.6). Note that if the stock satisfies the time ho-
mogeneous SDE: dSt = rStdt + Stσ(St)dWt, call it Problem (I), then
the forward price ft = er(T−t)St satisfies the driftless but time inho-
mogeneous SDE: d ft = ftσ

(
e−r(T−t) ft

)
dWt = ftσ̃( ft, t)dWt, call it

Problem (II). The relationship between the implied volatility σ
f
BS for

problem (II) and that for problem (I) σr
BS is easily seen to be

σr
BS(s, t, K, T) = σ

f
BS

(
s, t, Ke−r(T−t), T

)
.
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From this it follows that

σr
BS,0(s, K) = σ

f
BS,0(s, K) =

log(s/K)∫ y
x

du
uσ(u)

,

σr
BS,1(s, K) = σ

f
BS,1(s, K) +

∂

∂t

[
σ

f
BS,0

(
s, Ker(T−t)

)]∣∣∣∣
t=T

= σ
f
BS,1(s, K) +

r∫ s
K

du
uσ(u)

−
r log(s/K)

σ(K)(∫ s
K

du
uσ(u)

)2 ,(3.20)

where in the first term above we need to determine σ
f
BS,1(y, x) for

what is now a time inhomogeneous problem (II). Calculating this
expression we find, since the volatility σ̃ now depends explicitly on
time, that compared to (3.18) there are additional r-dependent terms
which are given by:

−r
∫ y

x
1

uσ2(u)du + r
σ(K)

∫ y
x

1
uσ(u)

(
∫ s

K
1

uσ(u) du)3

log(s/K)

=
−r
∫ s

K
1

uσ2(u)du

(
∫ s

K
1

uσ(u) du)3

log(s/K)

+
r log(s/K)

σ(K)

(
∫ s

K
1

uσ(u))
2

The second term in the above expression cancels the third term in
(3.20) to produce exactly the expression (2.6).

The procedure we have outlined above that allows us, with a few
calculations, to pass from the zero to the non zero interest case, can
be repeated to determine the second order correction.

Remark 3.5. Yoshida’s approach requires some global hypothesis on
the coefficients of the parabolic equation. In particular, it requires the
equation to be non-degenerate:

min
t∈[0,T],S∈R

a(S, t) = c > 0.

Models like the CEV model, which will be considered in the numer-
ical section, and even the Black-Scholes model itself, do not satisfy
this condition since they are degenerate when S = 0. There may
also be problems at S = ∞. We have encountered similar problem
in the probabilistic approach in SECTION 2. However, as we have
explained in SECTION 2, as long as we keep away from these two
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boundary points, the behavior of the coefficient functions in a neigh-
borhood of the boundary points are irrelevant as long as we also
impose some moderate conditions on the growth of a(S, t). In par-
ticular the call price expansion will not be affected. This principle of
not feeling the boundary is explained in detail in APPENDIX A.

4. NUMERICAL RESULTS

To recap, we have derived an expansion formula for implied volatil-
ity up to second order in time-to-expiration in the form

σBS(t, T) = σBS,0(t) + σBS,1(t)(T − t) + σBS,2(t)(T − t)2 + o
(
(T − t)2

)
.

where the coefficients σBS,i(t) are given by (3.17), (3.18) and (3.19).
To test this expansion formula numerically, we use well-known ex-

act formulae for option prices in two specific time-homogeneous lo-
cal volatility models: the CEV model and the quadratic local volatil-
ity model, as developped by Lipton [27], Zuhlsdorff [33], Andersen
[1] and others.

Time dependence is modeled as a simple time-change so that these
exact time-independent solutions may be re-used. Specifically, the
time-change is:

τ(T) =
∫ T

0
e−2 λ t dt =

1
2 λ

(
1− e−2 λ T

)
Throughout, for simplicity, we assume zero interest rates and divi-
dends so that b(s, t) = 0 in equation (3.1).

4.1. The Henry-Labordère approximation. Pierre Henry-Labordère
presents a heat kernel expansion based approximation to implied
volatility in equation (5.40) on page 140 of his book [19]:
(4.1)

σBS(K, T) ≈ σ0(K, t)
{

1 +
T
3

[
1
8

σ0(K, t)2 +Q( fav) +
3
4
G( fav)

]}
with

Q( f ) =
C( f )2

4

[
C′′( f )
C( f )

− 1
2

(
C′( f )
C( f )

)2
]

and

G( f ) = 2 ∂t log C( f ) = 2
∂t a( f , t)

a( f , t)
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where C( f ) = a( f , t) in our notation, fav = (s + K)/2 and the term
σ0(K, t) is our lowest order coefficient (3.17) originally derived in [4]:

σ0(K, t) =
log(s/K)∫ s

K
dη

a(η t)

On page 145 of his book, Henry-Labordère presents an alternative
approximation to first order in T − t, matching ours exactly in the
time-homogeneous case and differing only slightly in the time-inhomogeneous
case. In Section 2, we demonstrated that our approximation is the
optimal one to first order in T − t.

4.2. Model definitions and parameters.

4.2.1. CEV model. The SDE is

d ft = e−λ t σ
√

ft dWt

with σ = 0.2. In the time-independent version, λ = 0 and in the
time-dependent version, λ = 1. For the CEV model therefore,

Q( f ) = − 3
32

σ2

f
and

G( f ) = −2 λ

so the Henry-Labordère approximation (4.1) becomes

σBS(K, T) ≈ σ0(K, t)
{

1 +
T
3

[
1
8

σ0(K, t)2 − 3
32

σ2

fav
− 3

2
λ

]}
The closed-form solution for the square-root CEV model is well-
known and can be found, for example, in Shaw[30].

4.2.2. Quadratic model. The SDE is

d ft = e−λ t σ
{

ψ ft + (1− ψ) +
γ

2
( ft − 1)2

}
dWt

with σ = 0.2, ψ = −0.5, and γ = 0.1. Again in the time-independent
version, λ = 0 and in the time-dependent version, λ = 1. Then for
the quadratic model,

Q( f ) =
1
32

σ2
{
( f − 1)3 (3 f + 1) γ2 + 24 (1− ψ) γ f

+ 12 ψ γ f 2 − 4
[
(4− 3 ψ) γ + ψ2

]}
and again

G( f ) = −2 λ
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The closed-form solution for the quadratic model with these param-
eters1 is given in Andersen[1].

4.3. Results. In TABLES 1 and 2, respectively, we present the errors
in the above approximations in the case of time-independent CEV
and quadratic local volatility functions (with λ = 0 and T = 1).
We note that our approximation does slightly better than Henry-
Labordère’s, although the errors in both approximations are negli-
gible. In Figures 1 and 2 respectively, these errors are plotted.

TABLE 1. CEV model implied volatility errors for vari-
ous strike prices in the Henry-Labordère (HL) approxi-
mation and our first and second order approximations
respectively. The exact volatility in the last column is
obtained by inverting the closed-form expression for
the option price in the CEV model.

Strikes ∆σHL ∆σ1 ∆σ2 σexact
0.50 2.12e-05 1.31e-06 1.98e-08 0.2368
0.75 3.46e-06 7.98e-07 9.87e-09 0.2148
1.00 5.68e-07 5.68e-07 6.03e-09 0.2001
1.25 1.52e-06 4.21e-07 4.08e-09 0.1891
1.50 3.45e-06 3.33e-07 2.96e-09 0.1805
1.75 5.45e-06 2.73e-07 2.18e-09 0.1734
2.00 7.27e-06 2.29e-07 1.70e-09 0.1674

In Figures 3 and 4, we plot results for the time-dependent cases
λ = 1 with T = 0.25 and T = 1.0 respectively, comparing our ap-
proximation to implied volatility with the exact result. To first order
in τ = T − t (with only σ1 and not σ2), we see that our approxima-
tion is reasonably good for short expirations (λ T � 1) but far off for
longer expirations (λ T > 1). The approximation including σ2 up to
order τ2 is almost exact for the shorter expiration T = 0.25 and much
closer to the true implied volatility for the longer expiration T = 1.0.

1The solution is more complicated for certain other parameter choices
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TABLE 2. Quadratic model implied volatility errors for
various strike prices in the Henry-Labordère (HL) ap-
proximation and our first and second order approxi-
mations respectively. The exact volatility in the last col-
umn is obtained by inverting the closed-form expres-
sion for the option price in the quadratic model.

Strikes ∆σHL ∆σ1 ∆σ2 σexact
0.50 -8.83e-05 -1.04e-05 -1.08e-07 0.3129
0.75 -3.42e-05 -3.05e-06 -1.94e-08 0.2451
1.00 -2.14e-06 -1.09e-06 -4.58e-09 0.2003
1.25 1.99e-05 -4.31e-07 -1.30e-09 0.1675
1.50 3.32e-05 -1.80e-07 -3.92e-10 0.1418
1.75 4.13e-05 -7.59e-08 -5.28e-11 0.1209
2.00 4.56e-05 -3.16e-08 9.57e-12 0.1032

APPENDIX A. PRINCIPLE OF NOT FEELING THE BOUNDARY

Consider a one-dimensional diffusion process

dXt = a(Xt) dWt + b(Xt) dt

on [0, ∞), where the continuous function a(x) > 0 for x > 0. We
assume that b is continuous on R+. We do not make any assump-
tion about the behavior of a(y) as y ↓ 0. Let d(a, b) be the distance
between two points a, b ∈ R+ determined by 1/a. If say a < b, then

d(a, b) =
∫ b

a

dx
a(x)

.

Let
τc = inf {t ≥ 0 : Xt = c} .

Lemma A.1. Suppose that x > 0 and c > 0. Then

lim
τ↓0

τ ln Px {τc ≤ τ} ≤ −d(x, c)2

2
.

Proof. Let Yt = d(Xt, x). By Itô’s formula we have

dYt = dWt + θ (Yt) dt,

where

θ (y) =
b(z)
a(z)

− 1
2

a′(z), y = d(z, x).

Without loss of generality we assume that c > x. It is clear that

Px

{
τX

c ≤ τ
}

= P0

{
τY

D ≤ τ
}

, D = d(x, c).
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Let θ be the lower bound of the function θ(z) on the interval [0, D].
Then Yt ≤ D for all 0 ≤ t ≤ τ implies that Wt ≤ D − θτ for all
0 ≤ t ≤ τ. It follows that

P0

{
τY

D ≤ τ
}
≤ P0

{
τW

D−θτ ≤ τ
}

.

The last probability is explicitly known:

P0

{
τW

λ ≤ τ
}

=
λ√
2π

∫ τ

0
t−3/2e−λ2/2t dt.

Using this we have after some routine manipulations

lim
τ↓0

τ ln P0 {τD−θτ ≤ τ} ≤ −D2

2
.

The desired result follows immediately.
Note that we do not need to assume that X does not explode. By

convention τc = ∞ if X explodes before reaching c, thus making the
inequality more likely to be true. �

Let 0 < a < x < b < ∞. Let f be a nonnegative function on R+
and suppose that f is supported on x ≥ b, i.e., f (y) = 0 for y ≤
b. This corresponds to the case of an out-of-the-money call option.
Consider the call price

v(x, τ) = Ex f (Xτ).

We compare this with

v1(x, τ) = Ex { f (Xτ); τ < τa} .

Note that v1 only depends on the values of a on [a, ∞), thus he be-
havior of a near y = 0 is excluded from consideration. We have

v(x, τ)− v1(x, τ) = Ex { f (Xτ); τa ≤ τ} def= v2(x, τ).

By the Markov property we have

v2(x, τ) = Ex {Ea f (Xs)|s=τ−τa ; τa ≤ τ} .

Now since f (y) = 0 for y ≤ b, we have

Ea f (Xs) = Ea { f (Xs); τb ≤ s} .

Using the Markov property again we have

Ea f (Xs) = Ea {Eb f (Xt)|t=s−τb ; τb ≤ s} .

We assume that
sup

0≤t≤1
Eb f (Xt) ≤ C.
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This assumption satisfied if we bound the growth rates of f , a and b
at infinity appropriately. A typical case is when f grows exponen-
tially (call option), and a and b grow at most linearly. These con-
ditions are satisfied by all the popular models we deal with. It is
clear that we have to make some assumption about the behavior of
the data at infinity, otherwise the problem may not even make any
sense. Under this hypothesis we have

Ea f (Xs) ≤ CPa {τb ≤ s} .

Now we have
v2(x, τ) ≤ CPa {τb ≤ τ} .

It follows from the LEMMA that

lim
τ↓0

τ ln v2(x, τ) ≤ −d(a, b)2

2
.

Recall that
v(x, τ) = v1(x, τ) + v2(x, τ).

The function v1(x, τ) does not depend on the values of a near y = 0.
We can alter the values of a near y = 0 and the resulting error is
bounded asymptotically by exp

[
−d(a, b)2/2τ

]
. Now if the support

of f (as a closed set) contains y = b, then we can prove, assuming a
behaves nicely near y = 0 if necessary, that

lim
τ↓0

τ ln Ex f (Xτ) = −d(x, b)2

2
.

Since d(x, b) < d(a, b), we have proved the following principle of
not feeling the boundary.

Theorem A.2. Let X1 and X2 be (a1, b1)- and (a2, b2)-diffusion processes
on R+, respectively, f a nonnegative function on R+, and 0 < a < x < b.
Suppose that ai, bi, f satisfy the conditions stated above. Suppose further
that a1(y) = a2(y) for y ≥ a. Then

lim sup
τ↓0

τ ln
∣∣∣Ex f (X1

τ)−Ex f (X2
τ)
∣∣∣ ≤ −d(a, b)2

2

and

lim
τ↓0

τ ln Ex f (Xi
τ) = −d(x, b)2

2
.

Corollary A.3. Under the same conditions, we have

lim
τ↓0

Ex f (X1
τ)

Ex f (X2
τ)

= 1.
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See Hsu [21] for a more general principle of not feeling the bound-
ary for higher dimensional diffusions.
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FIGURE 1. Approximation errors in implied volatil-
ity terms as a function of strike price for the square-
root CEV model with the parameters of Section 4.2.1.
The solid line corresponds to the error in Henry-
Labordère’s approximation (5.40), and the dashed and
dotted lines to our first and second order approxima-
tions respectively. Note that the error in our second
order approximation is zero on this scale.

0.5 1.0 1.5 2.00.
0e
+0
0

5.
0e
-0
6

1.
0e
-0
5

1.
5e
-0
5

2.
0e
-0
5

Strike

A
pp

ro
xi

m
at

io
n 

er
ro

r

H-L
σ1
σ2



ASYMPTOTICS OF IMPLIED VOLATILITY 35

FIGURE 2. Approximation errors in implied volatility
terms as a function of strike price for the quadratic
model with the parameters of Section 4.2.2. The solid
line corresponds to the error in Henry-Labordère’s ap-
proximation (5.40), and the dashed and dotted lines
to our first and second order approximations respec-
tively. Note that the error in our second order approx-
imation is zero on this scale.
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FIGURE 3. Implied volatility approximations in the
CEV model with the parameters of Section 4.2.1 for
two expirations: τ = 0.25 on the left and τ = 1.0
on the right. The solid line is exact implied volatility,
the dashed line is our approximation to first order in
τ = (T − t) (with only σ1 and not σ2) and the dotted
line is our approximation to second order in τ (includ-
ing σ2).
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FIGURE 4. Implied volatility approximations in the
quadratic model with the parameters of Section 4.2.2
for two expirations: τ = 0.25 on the left and τ = 1.0
on the right. The solid line is exact implied volatility,
the dashed line is our approximation to first order in
τ = (T − t) (with only σ1 and not σ2) and the dotted
line is our approximation to second order in τ (includ-
ing σ2).
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